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Abstract 

Remote sensing devices have emerged as a significant 

technology that enables the monitoring of processes 

and physical environment from far away locations. 

These remote sensing systems include physiological 

sensors installed on human body to continuously 

monitor the health and enable the fast detection of 

medical emergencies and the delivery of therapies 

(Body Area Networks-BAN), smart buildings that detect 

absence of occupants and shut down the cooling unit to 
save energy, data centers that use solar energy for 

cooling purposes, and unmanned aerial vehicles 

(UAVs) that use an image of the terrain to perform 

surveillance.  They have been used to provide services 

such as automated pervasive health care, smart 

electricity grid, green cloud computing, and 

surveillance with UAVs. Since these systems utilize 

information from the physical environment and in turn 

affect the physical environment during their operation, 

any vulnerabilities, threats and attacks can expose the 

monitored process or physical environment to a number 
of risks. This paper seeks to develop Cyber Physical 

System Security Model for protecting remote sensing 

devices. The paper also investigatedthe tight coupling 

between the cyber and the physical in Cyber Physical 

Systems (CPSs), to establish the various forms of risks 

that have not been considered adequately in the 

traditional computing domain such as the cyber 

element adversely affecting the physical environment.  

 

Keywords: Remote Sensing Systems, Risk Anaysis, Body 

Area Networks, Supervisory Control and Data 

Acquisition,Industrial Control System, Cyber Physical 
System 

I. Introduction 

Infrastructure constitutes any physical asset capable of 

being utilized to produce services or support the 
structure and operation of a society or an enterprise and 

include roadways, bridges, airports and airway 

facilities, mass transportation systems, waste treatment 

plants, energy facilities, hospitals, public buildings and 

space or communication facilities. Critical 

infrastructure on the other hand consist of  physical, 

virtual facilities and services that form the basis for a 

nation‟s defense, a strong economy, health and safety of 

its citizens. It is charged with the provision of 

necessities such as water and food, electricity and gas, 
telecommunications and broadcasting, health services, 

the financial system and the transportation system.  

 

Every critical infrastructure constitute of an Industrial 

Control System (ICS) that is made up of Supervisory 

Control and Data Acquisition (SCADA) systems and 

other types of control systems that monitor processes 

and control flows of information. ICS serve to regulate 

the flow of natural gas to a power generation facility or 

the flow of electricity from a grid to a home. Cyber 

systems form the central infrastructure of critical 

sectors as nearly all of them utilize IT to facilitate core 
business processes. Given their high value nature, the 

cyber systems of critical infrastructure have become 

targets for attack, and their disruptions have led to 

extensive economic, political and social effects. 

 

The cyber systems consist of various software, the 

development of which, according to Sebastian and 

Stephan (2018), comprises of diverse activities such as 

implementing new features, analyzing requirements, 

and fixing bugs. Universal satellite and data 

connectivity is one of the major advancements in 
seafaring. Many critical systems on board rely on the 

Global Navigation Satellite System (GNSS) for safe 

navigation, communication, emergency response, and 

traffic control. However, disrupted or manipulated 

Global Positioning System (GPS) signals can send 

ships off their course and cause collisions, groundings, 

and environmental disasters (Dennis et al., 2017). 

 

Threats to critical infrastructures are perpetrated 

through electronic, radio-frequency or computer-based 

attacks on the information components that control 
these critical infrastructures. In addition, these critical 

infrastructure systems have vulnerabilities that can be 
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exploited through threat vectors, which can be technical 

or non-technical. Despite the growth in application 

security testing over time, applications executing in 

critical infrastructures still remain insecure. Scans of 

thousands of applications and billions of lines of code 

have found a widespread weakness in applications, 
which has become a top target of cyber attackers. 

 

According to Tobby (2017),the Internet of Things (IoT) 

is a vital concept embedded within a larger spectrum of 

networked products and digital sensors. This 

technology has caused an explosion of applications, 

marking a fundamental shift in the way human beings 

interact with the Internet and presenting both 

opportunities and challenges, particularly with respect 

to critical infrastructure. For instance hackers have used 

IoT devices such as printers, thermostats and 

videoconferencing equipment to breach security 
systems. 

 

The Internet-enabled infrastructures have facilitated 

home automation, energy-management systems, smart 

homes, network-enabled medical gadgets, intelligent 

vehicles, networked traffic systems, road and bridge 

sensors, innovations in agricultural, industrial, energy 

production and distribution. Although this has opened 

up numerous avenues for efficiency, the unregulated 

rise of the IoT raises a plethora of issues such as 

security and privacy of people, telecoms networks and 
power utilities. This is due to illegitimate breaches of 

the networks undergirding critical infrastructure since 

the efficiency of Internet connectivity also accelerates 

susceptibility to security violations through the misuse 

of IoT data. 

 

Although an ICS is air-gapped and hence a closed 

system, it may not be vulnerable to virtual attacks but is 

still susceptible to attacks perpetrated through physical 

access such as from infected removable devices. As 

technology continues to grow, a number of ICSs have 

been connected to the Internet, making them vulnerable 
to multifarious attacks. Computers and communications 

being critical infrastructures in their own right are 

increasingly connecting other infrastructures together. 

The increased connectivity means that a disruption in 

one network may lead to disruption in another and 

hence reliance on computers and networks increases 

critical infrastructure‟s vulnerability to cyber attacks. 

 

According to Arash and Stuart (2015), CPS provides 

the control of physical components through cyber based 

commands and its operations are integrated, monitored, 
or controlled by a computational core. By integrating 

actuators, control processing units, sensors, and 

communication cores, a CPS forms a control loop for 

each of the physical component of the system. The 

major components of a CPS are SCADA, distributed 

control system (DCS), and program logic controller 

(PLC). 

 

The SCADA systems gather and control geographically 

dispersed assets ranging from controlling sensors within 
a plant to controlling power dissemination in a country. 

They are heavily utilized in various critical 

infrastructures such as electrical power grids, water 

distribution systems, and oil refineries. On the other 

hand, DCS manages the controllers that are grouped 

together to carry out a specific task within the same 

geographically location. Both SCADA and DCS 

employ PLC devices to manage industrial components 

and processes. PLCs are typically programmed from a 

Windows-based machine by an operator. The operators 

utilizes SCADA and DCS for various controlling tasks 

such as process monitoring and configuring control 
parameters. 

 

In their paper, Lange et al., (2016) point out that the 

success of a business mission is highly dependent on 

the Communications and Information Systems (CIS) 

that support the mission. As such, cyber attacks on CIS 

degrade or disrupt the performance and completion of 

the associated mission capability. On an operational 

level, an electrical grid‟s mission is to deliver electricity 

from suppliers to consumers. For monitoring and 

control purposes, they are connected to CIS. The 
operability, performance, or reliability of an application 

may depend on multiple network services spanning 

multiple network devices and sub-networks of an 

infrastructure. 

 

The risks associated with vulnerable software deployed 

in enterprise environments have exposed customer data 

or intellectual property and can be caused by attackers 

exploiting weaknesses in web applications or desktop 

software. Lack of consistent, proactive policies to 

manage vulnerabilities associated with the Bring Your 

Own Device (BYOD) trend. Mobile devices come with 
one huge challenge of ensuring that all valuable 

information is secure and the increasing number of 

these devices elevates the threat of accidental and 

intentional security breaches. As such, verifying the 

security of the software being downloaded to those 

devices is becoming a business priority. This is 

important since platforms such as Google‟s Android do 

minimal vetting of the safety of applications before 

permitting consumers to download from their App 

store. 

 
Application security performance has been noted to 

reduce greatly owing to a number of factors  such as the 

vulnerabilities in commercial software  that permit 

remote code execution and backdoor functionality, 
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cross-site scripting and SQL injection inherent in 

Government applications than other industry sectors, 

and a  number of Android applications that were found 

to contain hard-coded cryptographic keys. 

 

According to Mark (2017), mission function is 
increasingly delivered in software. For instance,F-35 

aircraft depends on more than twenty million lines of 

code to fuse information from the JSF's radar, infrared 

cameras, jamming gear, other planes and ground 

stations. This aids it to locate and hide from opponents, 

as well as break through enemy lines to hit targets on 

the ground. Steel furnaces have been successfully 

attacked, causingmassive damage to furnace. This is 

exampled by a targeted APT attack on a German 

steelworks which ended in the attackers gaining access 

to the business systems and through them to the 

production network, including SCADA.  Consequently, 
the attackers gained control of a steel furnace, causing 

massive damages to the plant. 

 

In addition, electric grids have come under attacks, such 

as the BlackEnergy Trojan that attacked Ukrainian 

electric power industry. The weapons platforms have 

also become potential cyber attacktargets.The Joint 

Strike Fighter aircraft relies on more than twenty 

million lines of code and the Pentagon canceled a cyber 

test due to concerns it would damage the Autonomic 

Logistics Information System that identifies broken 
parts and other faults. On their hand, embedded systems 

present new classes of vulnerabilities owing to their 

different characteristics compared to other systems. 

They present more and varied attack surfaces such as 

sensors, multiple command-and-control masters, 

embedded firmware, unique internal busses and 

controllers, size, weight, power and latency that 

demand tradeoff against defense-in-depth, timing 

demands that offer potential side channels such as bit 

and clock cycle level operations, physical resources 

with real time sensors, safety-critical real-time 

operating system, confusion between failure resilience 
and attack, and intermittent communications. 

 

Connecting automotive systems to internet opens 

system to attack as this system extensions opens 

vulnerabilities not anticipated during the design. 

Moreover, optimizations performed assume one attack 

method and this assumption no longer hold due to 

additional integrations. This new operational 

environment is a major cause for the introduction of 

new vulnerabilities in existing systems. Machine-

learning based systems increase systems exposures. For 
instance Tesla car's driverless technology failed to 

detect the white side of the tractor-trailer against a 

brightly lit sky, and hence never activated its brakes. 

This shortcoming can be attributed to the fact that 

although conventional code development techniques of 

modest could have helped, operations are driven by 

high volume, high velocity sensor data, and that 

decision making is based on trained models of 

behaviors, which experience some limits. 

II. Related Work 

A study by Noel et al., (2016) pointed out that the Vital 

Infrastructure, Networks, Information and Control 

Systems Management (VIKING) project was to 

investigate the vulnerability of SCADA systems and the 

cost of cyber attacks on society, focusing on systems 

for transmission and distribution of electric power. This 

was achieved by adopting a model-based approach to 

investigating SCADA system vulnerability. According 
to Motzek and Möller (2017), mission impact has to be 

considered in the context of what impact the adversary 

desires, meaning that if knowledge or estimation of the 

intents, motivations and anticipations of the adversary 

is possible, then the impact of the adversary on 

missions or the intended impact would be easier to 

assess. 

 

Mark (2017) explains that catching software faults early 

saves money as these faults accounts for 30‒50% 

percent of total software project costs. Tobby (2017) 
points out that whereasthe change in ICS architecture 

supports new information system capabilities, it 

provides significantly less isolation for these systems 

from the outside world. This introduces vulnerabilities 

that exist in current networked information systems. 

Some of the shortcomings of these ICSs include 

outdated and difficult to update software, sensors and 

controls running many contemporary facilities and 

equipment. This means that organizations are unable to 

incorporate new features and improvements. There is 

also inadequate integration between internal systems 

such as managerial apps, plant data sources, and 
external partners, which creates data silos. Aging 

operating systems and vulnerable operational 

technologies pose security risks because they cannot be 

easily retired or replaced. Moreover, as Daugherty et al. 

(2015) explains, there is limited embedded computing 

or intelligence control at the device, product or plant 

level.  

 

Tobby (2017) discuss that all critical infrastructure 

systems have vulnerabilities that can be exploited 

through threat vectors. These vulnerabilities may be 
technical or non-technical. Whereas technical 

vulnerabilities are application-based, non technical ones 

are common Internet protocols vulnerabilities. The core 

protocols such as IP, TCP and HTTP were created and 

implemented without factoring in security features 

since the Internet was initially used to serve academic 
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and governmental environments, wherein the users 

were trusted entities. 

Randy and Susan (2016) point out thatdevelopers need 

knowledge on secure coding techniques and tools that 

render software reliable, robust, and secure. Secure 

software design is vital to prevent loss of data, 

premature leaks of data and downtime of resources. The 

main reason for the escalation of cyber attacks in the 

field of critical infrastructure (CI) is that most control 

systems used for CI do not utilize propriety protocols 
and software any more, but standard solutions. This 

implies that critical infrastructure systems are becoming 

vulnerable and exposed to cyber threats. 

 

A major factor for the decreasing security of SCADA 

networks is the use of commercial off-the-shelf (COTS) 

hardware and software to develop devices.  In their 

report, Katerina and Jacob (2017) explain that space 

missions provide valuable services to the society from 

navigation, to earth observation, weather forecasting, 

and communication. As such, space missions are part of 
the critical infrastructure and are regularly targeted by 

attackers. For instance, NASA experiences 29,000 

malicious incidents against its systems, 17,500 

suspicious e-mails, and 250 unique incidents against its 

web sites on a weekly basis. It is therefore vital to 

utilize software development and assurance practices 

that account for cyber security concerns. 

 

Chris (2017) analyzed some software vulnerabilities 

and established that many applications are not being 

assessed for security at all.  This has facilitated cyber 

attacks on elections in the U.S. and other democracies, 
demonstrating that most critical systems are in the 

cross-hairs. Global cyber attacks on a massive scale 

such as the WannaCry and Petya ransomware attacks, 

cyber attacks on electric utilities, cyber wars between 

nation states have all created a sense of urgency of 

tackling the problem of insecure software. 

Unfortunately, more attention has drifted away from 

prevention towards detection and response.  

 

Arman et al., 2018 explains that software architecture 

includes many variation points that can take on one of a 
set of possible alternatives such as employing either an 

encrypted or plain-text data storage, using a relational 

database, a document database, or a key-value store. A 

design decision involves the selection of one of these 

alternatives. During decision making, architects 

carefully assess each alternative and how it satisfies or 

affects each of the system‟s requirements. 

Unfortunately, this is frequently not done in practice. 

An illustration of ineffective design-decision impact 

assessment is the Healthcare.gov portal that resulted to 

serious technical problems at launch and a development 

cost. The portal‟s downtimes of up to 60% were caused 

by flawed architectural and deployment design 

decisions. The system was deployed using a single-

node NoSQL database that also stored federal 

government employee information instead of using a 

distributed database configuration.  
 

III. Approach 

This paper utilized secondary data from mission critical 

security reports, cyber security reports, government 
website data, security expert opinions and past research 

papers to get a glimpse of the state of mission critical 

security issues. 

IV. Empirical Analysis of Mission Critical Security 

Issues 

Di Martino et al. (2014) analyzed the failures of the 

Blue Waters, the Cray hybrid (CPU/GPU) 

supercomputer, and found that software was the largest 
contributor to the node repair hours (53%), even though 

it caused only 20% of the total number of failures. The 

security vulnerabilities published in the Bugtraq 

database and CERT advisories have been analyzed. Out 

of the twelve classes used to classify 5,925 Bugtraq 

reports on software related vulnerabilities, five classes 

dominated: input validation errors (23%), boundary 

condition errors (21%), design errors (18%), failure to 

handle exceptional conditions (11%), and access 

validation errors (10%). 

 
In their paper, Lange et al., (2016) report that the 

energy sector reported an increase in frequency and 

sophistication of cyber attacks on electricity systems. 

Hambling, (2017) found out that multiple ships 

outbound from the united states  have reported GPS 

interferences and reports have emerged of more than 20 

vessels which noticed spoofed GPS signals that placed 

them about 25 nautical miles inland.  The National 

Institute of Standards and Technology, (2017) explains 

that this is alarming considering that these are naval 

vessels carrying advanced weaponry as well as the 

commercial shipping sector, which is part of the critical 
infrastructure and accounts for more than 90% of cargo 

transported globally. 

 

Navalservices such as voice communications, crew 

welfare and entertainment systems, guest Wi-Fi, and 

video monitoring are perceived to be less critical to 

safety and operations and hence routinely left 

unpatched and exposed to attacks. The IT networks in 

ships are employed for accounting, cargo management, 

customs and shipping, human resource planning, and 

administration. According to Hudson AnalytixInc, 
(2017), a malware outbreak in 2017 paralyzed IT 

networks across the world and caused significant 
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business disruptions and loss of revenue. The Symantec 

Security Response, (2017) point out that the  NotPetya 

worm initially infected computers through a malicious 

update in an accounting software product, which then 

spread to attached systems, wiping or encrypting files 

and demanding ransom payments. This can be 
attributed to the fact that the design and configuration 

of the links between IT networks seldom take into 

account authentication and encryption methods, hence 

exposing potential vulnerable and legacy system to the 

internet. Since IT systems on vessels are often 

connected with onshore facilities, this further increases 

the exposure to systemic and persistent threats. 

 

The Electronic Chart Display Information System 

(ECDIS) mandated by the International Maritime 

Organization (IMO) for all commercial vessels is 

normally installed on the bridge. Unfortunately, the 
ECDIS software implementations have a number of 

weaknesses such as running on legacy computers for 

which no security updates are available, maps get 

loaded onto the system either via the internet, USB or 

DVD, sensor feeds comes from a multitude of other 

onboard systems such as Radar, Navigation Telex 

(Navtex), ICS, and satellite terminals. This provides a 

wide surface for any attack. Commercial ECDIS 

software has some significant security risks that allow 

attackers to replace or delete files on the system or 

inject malicious content. Consequently, tampered 
sensor data could be sent to ECDIS, which would 

influence decisions for navigation, and may cause 

collision or grounding. 

 

Santamarta (2014) tested a range of Very Small 

Aperture Terminal (VSATs) from multiple 

manufacturers and established that all audited devices 

are vulnerable at the protocol and implementation level 

as they transmit in plain text without authentication, 

encryption, or integrity checks. This can allow an 

attacker to inject fake signals or malicious code to 

cause device to shut down or corrupt the system, 
disabling the ship from navigating safely. 

 

An  empirical study by Grottke et al.(2010)  based on 

space mission data analyzed 520 anomalies from the 

flight software of eighteen JPL space missions and 

reported that 61% of bugs were Bohrbugs (bugs easily 

isolated and removed during software testing) and 37% 

were Mandelbugs (bugs that behave chaotically). 

Alonso et al. (2013) analyzed the mitigation associated 

with the Bohrbugs and Mandelbugs. Based on the 

analysis of bug reports of four open-source software 

systems, Cotroneo at al. (2013) classified software bugs 
as Bohrbugs, non-aging-related Mandelbugs, and 

aging-related bugs. 

 

As shown in Figure 1, software security is a lifecycle 

issue consisting of three major steps, requirements and 

acquisition (mission thread, threat analysis and abuse 

cases), engineering and development (abuse cases, 

architecture and design principles - A & DP, coding 

rules and guidelines - C R & G, Testing, validation and 

verification -T V&V), and deployment and operations 

(Testing, validation and verification -T V&V, 
Monitoring, and breach awareness - BA). This figure 

illustrates that these three steps overlap each other, with 

the first step overlapping with the second one, and the 

second one overlapping with both the first and third 

step. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 1: Software Security Life Cycle 
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However, it was established that 19% of software 

engineers fail to execute security requirement 

definition, 27% do not practice secure design, 72% 

never employ code or binary analysis, 47% never 

perform acceptance testing for third party code, and 

more than 81% fail to coordinate their security practices 

in various stages of the development life cycle as 

shown in Figure 2. 

 

 
 

Figure 2: Statistics on Software Security Life Cycle 

 
The rise of open source software is another security 

challenge as 90% of modern applications were 

established to be assembled from third party 

components and at least 75% of organizations depend 

on open source as the foundation of their applications. 

Up to 1.8 billion vulnerable open source components 

had been downloaded in 2015, 26% of which have high 

risk vulnerabilities 

 
The 2008 explosion of the majority Baku-Tbilisi-

Ceyhan pipeline in Turkey was a digital attack in which 

unidentified hackers infiltrated the pipeline through a 

wireless network, tampered with the systems and 

caused substantial physical damage in an explosion. On 

its part, Stuxnet was a precision attack causing physical 

damage to Iranian nuclear centrifuges by directing them 

to spin out of control while simultaneously playing 

recorded system values that indicated normal 

functioning centrifuges during the attack. According to 

Hayden et al., (2014), one of the most touted ICS cyber 

incidents was the unauthorized release of sewage as the 
result of malicious operation. 

 

As Kwon, (2015) noted, DarkSeoul that affected 48,000 

computers in South Korea disrupted network systems 

and erased hard disks. It also made attempts to 

penetrate South Korea‟s nuclear power plants. Russia-

based hackers have been able to cause power blackouts 

across Ukraine in the first full-fledged attack on an 

electricity distribution network (Vallance, 2016). The 

malware was embedded in Microsoft Word documents 

which once opened, installed itself. Firewalls managed 

to prevent the attacked computers from gaining control 

of larger systems. However, an improved version of this 

malware, BlackEnergy 3, managed to obtain passwords 

and login details, through which another attack was 

launched. The attackers remotely logged into SCADA 

systems, remotely controlled them, cut power at 17 
substations, and jammed company communications 

such that engineers had difficulty gauging the extent of 

the blackout. 

 

Georgios et al., (2016) explain that developments in the 

IT world that could spill over to production 

environments. As such, attacks in the IT infrastructure 

will find their way into mission critical systems. The 

OpenSSH implement the secure communications 

protocol SSH which is then used to securely 

communicate over the internet. However, the roaming 

vulnerability, inherent in about 70% of all installed 
SSH clients facilitates both credential stealing and 

buffer overflow. The transport layer security (TLS) on 

its part still supports obsolete, less secure encryption 

protocols that have enabled DROWN attacks, through 

which attackers acquire and decrypt session‟s 

encryption key. With this knowledge, the whole 

communication can be decrypted. Domain Name 

Service (DNS) has been employed to compromise 
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industrial control installations through DNS Squatting. 

The Android mobile operating system has been 

attacked by Triada which infects the OS template 

utilized to activate applications. As such, it is present in 

every application that starts to run after the infection. 

Afterwards, it hijacks and spies normal device 
operations such as access and control SMS messages. 

Since it operates in memory, it is intricate to detect by 

antivirus applications 

 

The Symantec antivirus system was observed to have 

serious vulnerability in its engine, mainly due to its 

execution of unpackers, required by the antivirus 

engines in order to decompress and search into 

executable code in the kernel. Any successful attack 

against them would lead to system memory 

overwriting, which is essentially a buffer overflow, and 

the subsequent control of the OS.  
 

In his report, Chris (2017) noted that vulnerabilities 

continue to emerge in previously untested software at 

alarming rates, with 77% of applications having at least 

one vulnerability on initial scan, out of which only 14% 

of very high severity flaws were closed in 30 days or 

less. Government organizations had the highest 

prevalence of highly exploitable vulnerabilities such as 

cross-site scripting (49%) and SQL injection (32%). 

These vulnerabilities included risky cryptographic 

practices such as using broken crypto algorithms, 
improperly validating certificates, storing sensitive 

information in clear text, and employing inadequate 

encryption strength. 

A number of open source components remain 
unpatched once built into software, with 88% of Java 

applications having at least one flaw in a component. 

Although operations have a role to play in securing 

production applications, 25% of sites were observed to 

be running on web servers containing at least one high-

severity vulnerability, while 83% of organizations 

released codes before testing or resolving security 

issues. 

 

Cloudflare HTML parser designed for improving 

website performance was found to have exposed one in 
every 3.3 million HTTP requests. This vulnerability in 

content delivery network vendor Cloudflare put 

millions of websites at risk with an information leakage 

flaw in its software that  exposed sensitive data such as 

passwords, cookies, and authentication cookies for 

random customers over a five-month period. 

Panamanian law firm Mossack Fonseca customer-

facing website used an old version of SSL that was 

vulnerable to the DROWN attack, which led to leakage 

of 11.5 million files and 2.6 TB of secret data. Code 

quality was observed to eventually impact the security 

of the application. This includes improper resource 

shutdown or release, leftover debug code, and using the 

wrong operator when comparing strings. A zero-day 

attack, DoubleAgent, took advantage of capability left 

over in a runtime verification tool in Windows, 

Microsoft Application Verifier. This tool left open the 
capability to replace its standard verification execution 

with a custom verifier that can be injected into any 

application to give an attacker full remote code 

execution. 

Katerina and Jacob (2017) analyzed data from issue 

tracking systems of two NASA missions which were 

organized in three datasets: Ground mission IV and V 

issues, Flight mission IV and V issues, and Flight 

mission Developers issues.  The results showed that: in 

IV and V issues datasets the majority of vulnerabilities 

were code related and were introduced in the 

implementation phase; for all datasets, close to 90% of 
the vulnerabilities were located in two to four 

subsystems; out of 21 primary vulnerability classes, the 

ones that dominated included exception management, 

memory access, risky values, and unused entities, 

which together contributed from around 80% to 90% of 

vulnerabilities in each dataset. In both the Ground and 

Flight mission IV and V issues datasets, the majority of 

security issues, 91% and 85%, respectively, were 

introduced in the implementation phase. The most 

security related issues of the Flight mission Developers 

issues dataset were found during code implementation, 
build integration, and build verification. 

 

Carriage Return Line Feed (CRLF) injection attack 

rides on flaws involving improper output neutralization 

for logs and improper neutralization of CRLF in HTTP 

headers. Through these flaws, Java and Python 

applications that poorly filter CRLF have been shown 

to compromise firewalls. These applications are duped 

into running rogue FTP connections by using 

maliciously crafted URLs to trigger unauthorized 

commands. Mirai malware managed to knock off 

Twitter, Netflix and GitHub websites through 
distributed denial of service directed at Dyn, the 

Domain Name System services provider for those sites. 

The attack was possible through a botnet of IoT devices 

using hardcoded passwords. Cross site scripting (XSS) 

vulnerability in eBay website allowed attackers to 

embed malicious JavaScript in legitimate listings. This 

led to their redirection to spoofed eBay login pages that 

led to the hijacking of  eBay accounts, setting off a 

cascade of costly fraudulent activity on the this site. 

 

The WannaCry ransomware rode on an input validation 
error in a transport protocol used by Windows machines 

called Server Message Block (SMB). This vulnerability 

involved open redirect and unsafe reflection. 

Encapsulation flaws such as trust boundary violations, 
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protection mechanism failures, and deserialization of 

untrusted data have facilitated ransomware attack 

against the San Francisco Metropolitan Transit 

Agency‟s Municipal Rail. Specifically, the attack 

exploited a Java deserialization flaw. 

 

V. Current State of Software Security Models 

As Erlingsson (2016) explains, security models that 

enable simple, useful security policies for large classes 

of software are ideal. However, their simplicity 

prevents them from addressing many real-world 

security concerns. An ideal security model that admits 

simple policies is the one that includes mechanisms to 

thwart the exploits of low-level software vulnerabilities. 

 

Stack-based buffer overflows and memory-corruption 

vulnerabilities have become a primary exploit vector 

and a critical software security issue. In defending 
against such attacks, the security model, programmer 

intent software security, has been particularly effective 

at defining simple, useful security policies that 

successfully prevent exploits. This model permits only 

low-level executions that programmers intended to be 

possible, unless given explicit, special permission. 

Here, security policies are automatically derived from 

software source code or binaries by identifying simple 

program properties that are obviously true based on the 

programming-language abstractions and semantics and 

the clear intent of the programmers. 
 

According to Tice et al., (2014), examples of this 

security model is the enforcement of the programmer‟s 

intended control and data flow, termed as Control-Flow 

Integrity (CFI) and Data-Flow Integrity. The policies in 

this model greatly constrain the attacker from 

exploiting low-level vulnerabilities. Unfortunately, 
many of these instantiations tie policy and mechanism 

too closely and intricately together for the underlying 

model to be clearly identifiable. In addition, this model 

leaves other vulnerabilities such as actual logic errors 

made by programmers.  

 

Another software security model is the permit only 

executions that historical evidence shows to be 

common enough, unless given explicit, special 

permission. This model prohibits all novel security-

relevant behavior, unless especially permitted and in so 

doing, prevent many software attacks, such as 
privilege-escalation exploits of the vulnerabilities 

regularly discovered in esoteric operating system 

services.  

 

As Erlingsson (2016) point out, data-driven security 

model is a new attractive model that is natural basis for 

software security enforcement. It considers how a 

software has behaved in the past, and can be naturally 

combined with existing security models by simply 

ensuring that operations proceed and information flows 

in accordance with historical audit logs as shown in 
Figure 3 and Figure 4. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Data-Driven Software Security Model Tied to Access Control 
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The primary parameters of data-driven security policies 

are event abstraction employed in execution traces, 

such as network service requests, API or system calls, 

function calls, or simply security privileges as well as 

the historical frequency by which security-relevant 

events must have been seen, to be permitted in the 

current execution. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Data-Driven Software Security Model Tied to Information Flow 

 

An event is considered to be supported by historical 

evidence if it has occurred at least once (or k times for 

some fixed, low threshold k) in the execution traces; 

otherwise, it is prohibited by the security policy. Such 

policies are employed in   network firewalls and 

operating-system sandboxing. They are also ideal in 

large-scale, popular software applications, which are 

normally big in size, composed of innumerable 

platforms, modules, and libraries, and full of arcane or 
unused functionality.  Since this software have various 

vulnerabilities as well as embedded interpreters, 

dynamic-library loaders, and reflection APIs that 

attackers can exploit to perform arbitrary behavior, by 

simply disallowing previously unseen security-relevant 

events, such attacks can effectively be thwarted. 

 

Thedata-driven software security model relies on the 

empirical program abstraction to avoid such falsely-

reported security violations. Here, empirical programs 

include all execution traces, not just those from training 

runs. These traces also encompass all executions 
performed during the software‟s development and 

testing, which ensures that any latent, actual software 

feature is represented, even for the first use of 

unpopular software. Moreover, data-driven security 

techniques are partially integrated into engineering 

processes and preferably used throughout the software 

development lifecycle. This software engineering 

integration is helpful in maintaining security policies as 

software is updated for security, stability, or behavior. 

 

The results of the data analysis have been combined 
with the source code examination to develop finite state 

machine (FSM) models that can be used to reason about 

security vulnerabilities. In a closely related work, the 

analysis of 107 CERT advisories showed that 

vulnerabilities of the following four types dominated: 

buffer overflow (44%), integer overflow (6%), heap 

corruption (8%), and format-string vulnerabilities (7%). 

 

VI. Current Mission Critical Software Security 

Countermeasures 

In the maritime environment, some strategic directions 

towards securing cyber technology on ships include 

defense –in-depth, security policies and procedures, and 
technical security solutions. In-depth includes policies, 

physical security, perimeter security, network security, 

application security and data security. Technical 

solutions include firewalls and intrusion prevention 

systems that monitor and block the data traffic as it 

leaves and enters the ship‟s IT network. The dataflow 

between all nodes on the network including ICS traffic 

and satellite and radio communications should be 

mapped out and encrypted, for instance by using VPN. 

 

Firewalls, routers, switches, servers, voice 

communication equipment, and any other device on the 
network should be network hardened, which involves 

secure configuration of hardware and software and the 

deactivation of unused features and accounts. The usage 

of secure communications protocols like SSH, HTTPS, 

and SFTP is another way of protecting mission critical 

infrastructure. Multi-Factor Authentication (MFA) offer 

an additional layer of access security to sensitive 

systems and applications while application white-listing 

prevents staff from installing unapproved and 

potentially malicious programs. As Mertens (2014) 

explains, data-loss-prevention software can mitigate the 
threat of intentional or accidental data leakage. Figure 5 

presents a threatanalysis tools that can help derive 

abuse and misuse cases. 
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Figure 5: Microsoft SDL Threat Modeling Tool 

 
Since Katerina and Jacob (2017) report showed that 

code related security issues dominated both the Ground 

and Flight mission IV and V security issues, with 95% 

and 92%, respectively, enforcing secure coding 

practices, verification and validation focused on coding 

errors are cost effective methods of improving critical 

missions‟ security.  

 

VII. Challenges of Current Software Security 

Protection 

In their paper, Johansson et al., (2009) point out that 

conventional IT security techniques can be applied to 
protect a CPS such as a critical infrastructure system 

against cyber threats or threats imposed by malicious 

insiders. Unfortunately, due to the unique features of a 

CPS, these security strategies and approaches are not 

sufficient enough to address the security challenges of a 

CPS. For instance, installing security patches or 

numerous system updates requiring the taking of the 

system offline is not economically justifiable, difficult, 

and infeasible. In addition, new updates or security 

patches may create other challenges that may a nuclear 

power plant to accidentally shutdown after a software 
update.  

 

Another challenge is that there is a lack of a framework 

for assessing the security in designing a CPS or 

evaluating the level of the security guarantee in a 

functional CPS at the design level. Consequently, it has 

been demonstrated that attackers can take control of air 

planes by having access to Wi-Fi services provided by 

the planes. In addition, most approaches for securing 

CPS consider the security of individual components of 

the CPS such as sensors, PLCs, actuators, or 

communication protocols. Using this isolation, they 

then adopt standard practices to secure individual 

components against security threats such as input 

validation or firmware tampering. This is insufficient as 
CPS can be attacked by compromising the interaction 

between components without hacking the individual 

components within a CPS. By changing the interaction 

of components, attackers create different outputs than 

what was requested by the operators. As an illustration, 

adversaries can cause delays in transferring the 

information from sensors to SCADA, activating 

unwanted actions imposed by the delay in receiving the 

requested results.  

 

Unified security enforcement mechanism is infeasible 

in mission critical infrastructure since these systems 
employ different devices from different vendors. The 

conventional approaches for safety analysis in CPS 

include Fault Tree Analysis (FTA), Failure Mode and 

Effects Analysis (FMEA), Hazard Analysis and Critical 

Control Points (HACCP), and Hazard and Operability 

Study (HAZOP). All these approaches are based on risk 

assessment and risk analysis of a system and none of 

them is geared towards addressing the threats that 

compromise the interactions among components in a 

CPS. This is because all of them consider individual 

components or subsystems in isolation in addressing the 
safety of a CPS.  

 

It is noted that these approaches were designed for 

safety analysis and hence cannot be used to effectively 

address the security concerns in a CPS. Safety and 

security are different in nature as a system may be safe 

but not secure. As an illustration, a system can permit 

unauthorized modifications of the control parameters 

within the safe range without being detected by system 

safety controllers, creating undesirable output that was 

not requested by the operator. 

 
In the software security domain, methods such as 

Microsoft‟s STRIDE/DREAD or attack tree have been 

developed for threat and vulnerability analysis. 

Unfortunately, the application of these methods to 

analysis of the security and safety-related incidents in 

CPS fails to consider the interactions among different 

components as well as that of the control loops. The 

current practice of constructing models for Mission 

Impact Assessment (MIA) is accomplished manually, 

making model construction very time consuming, 

expensive, difficult to document, to inspect and to 
validate.  

 

The security approaches for IT systems do not cover 

embedded system security as virus definitions and 
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operating guidelines do not always apply, firewalls and 

IDS or IPS are of limited value and centralized account 

control is not possible. This is because network tools 

and assessment techniques are unaware of embedded 

systems architecture and interfaces such as unique and 

insecure protocols, maintenance backdoors, hard-coded 
credentials, unique architectures of embedded 

controllers, and unplanned connectivity and upgrades. 

The application of the data driven model in a practical 

security enforcement mechanism is infeasible owing to 

the challenges in the selection of the security policy to 

be enforced on the first program execution. 

As Arman et al., (2018) discuss, architects need to 

understand the effects of the decisions on the final 

system in order to make effective design decisions. 

Regrettably, current assessment approaches for such 

systems rely on static or dynamic analysis of system 

models. Static analysis techniques call for the 

development of complicated mathematical models 

which require steep learning curves and significant 

modeling effort, limiting the resulting system‟s 
scalability. Esfahani et al., (2013) further explain that 

based on the mathematical models they rely on, these 

techniques are confined to particular category of 

software system models, or are heavily dependent on 

error-prone and sometimes inaccessible expert inputs. 

 

On the other hand, architectural modes based on 

dynamic analysis techniques are capable of capturing 

the randomness reflective of reality and are ideal in 

constructing models tailored to the task at hand. 

However, as Langhammer et al., (2016) point out, these 

models have false negatives and longer execution times. 
In addition, Aleti et al., (2013) explain that simulations 

of software architectural models have not been 

extensively utilized compared with static analyses since 

creating simulatable system designs is intricate, and 

running simulations on multifarious models is time 

consuming and requires explicitly addressing scalability 

issues. Me et al., (2016) states that trade-offs in system 

properties caused by design decisions complicate 

quantitative assessment while Shahbazian et al., (2016) 

elaborate that  analysis of system behavior requires 

massive datasets. 
 

VIII. Proposed Software Security Models 

In their paper, Luigi et al., (2017) explain that defense 

software development process is aa complicated 
activity due to the complex domain, requirement for a 

very high quality solution and the need to satisfy very 

specific and complex needs. Specifically, the command 

and control software has to satisfy functional 

requirements that are extremely detailed as the 

situations that create them involve a large number of 

assets and human resources that have to be coordinated 

in a way that minimizes losses, as any trade-offs may 

result in the loss of lives. 

 

Mission critical software in any Army software must 

meet integration, safety, security, real time response 
and be reliable. Integration enables the software to 

operate in highly interdependent ecosystem.  For 

instance, command and control software must allow 

seamless integration with communications software to 

enable inter-force communication. Security is crucial 

during the development of armed forces software to 

prevent unwanted intrusions and cyber attacks. Here, 

vulnerabilities in systems are simply unacceptable. 

Safety measures are significant to thwart inadvertent 

authorization of measures which could result in severe 

consequences. Real time response is critical to adapt to 

an evolving situation. Reliability is important in order 
to operate in hazardous conditions, in a disruptive 

environment with a high level of dependability and 

robustness. 

 

Critical control networks should be in a secured zone 

such as DMZ to isolate them from the corporate IT 

network and the internet.  Since CPSs are complex, a 

system-theoretic approach that takes into consideration 

the system complexity should be adopted to address the 

security of a multifaceted CPS at the design level. This 

enables the identification of vulnerable points, 
subsystem interactions and their effects on vulnerable 

points and provides recommendations on how to 

increase the security of a CPS. Game- theoretic 

approaches are suggested here to account for the highly 

adversarial nature of cyber operations.  

 

Team Software Process (TSP) is also suggested in 

mission critical infrastructure software development. It 

instills engineering discipline in software developers, 

and builds high-performance trusted teams. Extending 

TSP with security ensures safe design that minimizes 

attack surfaces, ensures defense in depth for software 
development, assures secure coding, provides tools for 

supporting automated conformance checking, tracks 

security defects, and monitors results of tests with 

respect to security. The software supply chain need to 

keep risk factors to some acceptable levels as illustrated 

in Figure 6. 
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Figure 6: Secure Software Supply Chain Model 

The software source code needs to be tested by 

performing rule conformance checking, thread safety 

analysis, information flows across applications, and 
operating system call flows. The industrial internet of 

things (IIoT) should apply non-invasive techniques to 

patch remote assets, and use industrial control and 

automation systems that cannot easily be shut down.  

Obsolete and legacy operating systems, hosts and 

devices that have limited or no security built into them 

should be properly managed. In addition, network 

connections should be monitored and controlled to 

ensure that only appropriate ones exist between 

sensitive industrial equipment. The software should 

have inbuilt fail-safe mechanisms to ensure that 

compromised systems that run ICSs cause no physical 
harm to people and property, or other severe 

consequences. 

 

Mobile devices from any manufacturer must be 
controlled centrally using an Enterprise Mobile Device 

Management (MDM) that restricts the functionality of 

such devices to the lowest necessary to execute their 

legitimate purposes, ensures that the devices have 

updated operating system, installed antivirus, control 

and filter web sites visited, restrict files downloaded, 

centrally and control software that can be installed. 

Policies and practical technical controls should be put 

in place to prevent users from connecting their own 

devices to Enterprise equipment as any of these devices 

can be part of an attack vector to mission critical 

systems. 

 

Figure 7 shows the proposed security requirements the 
cyber physical systems. As this figure demonstrates, 

there are five security aspects, namely the sensing 

security, communication security, actuation control 

security, storage security, and feedback security. 

Sensing security ensures validity and accuracy of the 

sensing process while communication security protects 

both inter- and intra-CPS communication from both 

active and passive attackers. Actuation control security 

ensures that no activation occurs without appropriate 

authorization, while storage security thwarts both cyber 

and physical tampering of any data stored by the CPS. 

The feedback security on its part protects the control 
systems in a CPS which provide the necessary feedback 

for effecting actuation. 

 
Figure 7: Cyber Physical System Security Model 

 
The deployment of anti-malware software throughout 

the ICS environment where possible, is also proposed. 

The usage of a bastion host to avert unauthorized access 
to protected locations in the ICS environment, 

application of application white-listing to thwart the 

execution of unauthorized applications, deployment of 

a breach detection system, and configuring USB 

lockdown on all SCADA environments are suggested.  

 

IX. Conclusions 

This paper has investigated software security issues in 
mission critical systems from which a number of 

security issues that expose these systems to attacks have 

been discussed.  Many weak spots in mission critical 

infrastructure such as ship and shore-based cyber 

systems have been observed. Failure to identify these 

vulnerabilities has led many entities into taking 

shortcuts in regard to applying and policing appropriate 

security measures. In addition, it has been established 
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that rapid cycles of software product development, 

implementation, maintenance, and decommissioning 

are overwhelming for the majority of these systems. 

Based on these challenges, rafts of measures and 

techniques that can be deployed to protect these 

systems have been proposed. Future work lies on the 
practical implementation of these measures into mission 

critical software development life cycle and the actual 

infrastructure. 

References 

[1] Sebastian B., & Stephan D. (2018).Towards a Theory of 

Software Development Expertise. In Proceedings of the 26th 

ACM Joint European Software Engineering Conference and 

Symposium on the Foundations of Software Engineering. Pp. 

1-14. 

[2] Dennis B., Guanglou Z., & Craig V. (2017). A critical analysis 

of security vulnerabilities and countermeasures in a smart ship 

system. Proceedings of the 15th Australian Information 

Security Management Conference. Pp.81-87. 

[3] Hambling D. (2017). Ships fooled in GPS spoofing attack 

suggest Russian cyberweapon. 

[4] National Institute of Standards and Technology. (2017). 

Framework for Improving Critical Infrastructure 

Cybersecurity. Draft Version 1.1. 

[5] Hudson Analytix Inc. (2017). Global Threats: Cybersecurity in 

Ports (Donald Duck, Daughters & Dollars. Hemispheric 

Conference on Port Competitiveness & Security: Finding the 

Right Balance, University of Miami, Center for International; 

Business Education & Research. 

[6] Symantec Security Response. (2017). Petya ransomware 

outbreak: Here‟s what you need to know. 

[7] Santamarta R. (2014). SATCOM terminals: Hacking by air, 

sea, and land. 

[8] Mertens M. (2014). Securing VSAT Terminals. 

[9] Arash N., & Stuart M. (2015). A Systems Theoretic Approach 

to the Security Threats in Cyber Physical Systems Applied to 

Stuxnet. IEEE Transactions On Dependable And Secure 

Computing. Pp. 1-20. 

[10] Johansson E., Sommestad T., &Ekstedt M.(2009). Issues of 

cyber security in scada-systems-on the importance of 

awareness. In 20th International Conference and Exhibition 

onElectricity Distribution-Part 1, IET. Pp. 1–4. 

[11] Motzek A., &Möller R. (2017). Context- and bias-free 

probabilistic mission. Computers & Security. Vol. 65, pp. 166-

186. 

[12] Lange M., Kuhr F., &Möller R. (2016). Using a Deep 

Understanding of Network Activities for Network 

Vulnerability Assessment. In Proceedings of the 1st 

International Workshop on AI for Privacy and Security. 

[13] Noel S., Ludwig J., Jain P., Johnson D., Thomas R., 

McFarland J., King B., Webster S., &Tello B.(2016). 

Analyzing Mission Impacts of Cyber Actions.  In NATO IST-

128 Workshop on Cyber Attack Detection, Forensics and 

Attribution for Assessment of Mission Impact, Istanbul. 

[14] Mark S. (2017). Building Secure Software for Mission Critical 

Systems. Software Solutions Symposium. Pp. 1-50. 

[15] Tobby S. (2017). Critical Infrastructure and the Internet of 

Things.Centre for International Governance Innovation and 

Chatham House. Pp. 1-20. 

[16] Daugherty, Paul, Prith Banerjee, WalidNegm and Allan E. 

Alter. 2015. “Driving Unconventional Growth through the 

Industrial Internet of Things.” Accenture. 

[17] Hayden E., Michael A., & Tim C. (2014). An Abbreviated 

History of Automation & Industrial Controls Systems and 

Cybersecurity. A SANS Analyst Whitepaper. 

[18] Kwon J. 2015. Smoking Gun: South Korea Uncovers Northern 

Rival‟s Hacking Codes. CNN. 

[19] Vallance C. 2016. Ukraine cyber-attacks „could happen to UK. 

BBC.com 

[20] Randy H., & Susan S.(2016). Secure Software Engineering 

Best Practices. NSF Cybersecurity Summit. Pp. 1-140. 

[21] Georgios K., Georgios G., &Athina M. (2016). Cyber Security 

Trends and their implications in ICS. JRC Technical 

Reports.Pp.1-28. 

[22] Erlingsson U. (2016). Data-driven Software Security: Models 

and Methods. ArXiv. Pp.1-7. 

[23] Tice C., Roeder T., Collingbourne P., Checkoway S., 

Erlingsson U., Lozano L., and Pike G.(2014). Enforcing 

forward-edge control-flow integrity in GCC & LLVM. In 

Proceedings of the 23rd USENIX Conference on Security 

Symposium, ser. SEC‟14. Pp. 941–955. 

[24] Katerina G., & Jacob T. (2017). Experience Report: Security 

Vulnerability Profiles of Mission Critical Software: Empirical 

Analysis of Security Related Bug Reports. IEEE 28th 

International Symposium on Software Reliability Engineering. 

Pp. 152-163. 

[25] Alonso J., Grottke M., Nikora A., & Trivedi K. (2013). An 

empirical investigation of fault repairs and mitigations in space 

mission system software. In 43rd IEEE/IFIP International 

Conference on Dependable Systems and Networks (DSN). Pp. 

1–8. 

[26] Cotroneo D., Grottke M., Natella R., Pietrantuono R., & 

Trivedi K. (2013). Fault triggers in open-source software: An 

experience report. In 24th IEEE International Symposium on 

Software Reliability Engineering (ISSRE). Pp. 178–187. 

[27] Grottke M.,  Nikora A., & Trivedi K. (2010). An empirical 

investigation of fault types in space mission system software. 

In 40th IEEE/IFIP International Conference on Dependable 

Systems Networks (DSN). Pp. 447–456. 

[28] Di Martino C., Kalbarczyk Z., Iyer R., Baccanico F., Fullop J., 

& Kramer J.(2014). Lessons learned from the analysis of 

system failures at petascale: The case of Blue Waters. In 44th 

IEEE/IFIP International Conference on Dependable Systems 

and Networks (DSN). Pp. 610–621. 

[29] Luigi B., Angelo M., & Alberto S. (2017). iAgile: Mission 

Critical Military Software Development. International 

Conference on High Performance Computing & Simulation. 

Pp. 545- 552. 

[30] Chris W. (2017). The State Of Software Security Today. 

Veracode. Pp. 1-44. 

[31] Arman S., Youn K., Yuriy B., Nenad M. (2018). Poster: 

MakingWell-Informed Software Design Decisions. 

ACM/IEEE 40th International Conference on Software 

Engineering: Companion Proceedings. Pp. 262-263. 

[32] Esfahani N., Malek S., &Razavi K. (2013). GuideArch: 

Guiding the exploration of architectural solution space under 

uncertainty. In International Conference on Software 

Engineering (ICSE). Pp. 43–52. 

[33] Langhammer M., Shahbazian A., Medvidovic N., and 

Reussner R. (2016). Automated extraction of rich software 

models from limited system information. In IEEE/IFIP 

Working Conference on Software Architecture (WICSA).Pp. 

99–108. 

[34] Aleti A., Buhnova B., Grunske L., Koziolek A., and 

Meedeniya I. (2013). Software architecture optimization 

methods: A systematic literature review. IEEE Transactions on 

Software Engineering (TSE).Vol. 39, Issue 5, pp.658–683. 

[35] Me G., Calero C., and  Lago P.(2016). Architectural patterns 

and quality attributes interaction. In IEEE Workshop on 

Qualitative Reasoning about Software Architectures 

(QRASA). IEEE. 

[36] Shahbazian A., Edwards G., and Medvidovic N. (2016). An 

end-to-end domain specific modeling and analysis platform. In 

Proceedings of the 8th International Workshop on Modeling in 

Software Engineering, ACM. Vol.16, pp. 8–12.  


